\(\int \frac {1}{\sqrt {3-3 \sqrt {3}+2 \sqrt {3} x^2} \sqrt {3+(-3+\sqrt {3}) x^2}} \, dx\) [303]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 41, antiderivative size = 47 \[ \int \frac {1}{\sqrt {3-3 \sqrt {3}+2 \sqrt {3} x^2} \sqrt {3+\left (-3+\sqrt {3}\right ) x^2}} \, dx=-\frac {1}{6} \sqrt {3+\sqrt {3}} \operatorname {EllipticF}\left (\arccos \left (\sqrt {\frac {1}{3} \left (3-\sqrt {3}\right )} x\right ),\frac {1}{2} \left (1+\sqrt {3}\right )\right ) \]

[Out]

-1/6*(x^2*(9-3*3^(1/2)))^(1/2)/x/(9-3*3^(1/2))^(1/2)*EllipticF(1/3*(9-x^2*(9-3*3^(1/2)))^(1/2),1/2*(2+2*3^(1/2
))^(1/2))*(3+3^(1/2))^(1/2)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 47, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.024, Rules used = {431} \[ \int \frac {1}{\sqrt {3-3 \sqrt {3}+2 \sqrt {3} x^2} \sqrt {3+\left (-3+\sqrt {3}\right ) x^2}} \, dx=-\frac {1}{6} \sqrt {3+\sqrt {3}} \operatorname {EllipticF}\left (\arccos \left (\sqrt {\frac {1}{3} \left (3-\sqrt {3}\right )} x\right ),\frac {1}{2} \left (1+\sqrt {3}\right )\right ) \]

[In]

Int[1/(Sqrt[3 - 3*Sqrt[3] + 2*Sqrt[3]*x^2]*Sqrt[3 + (-3 + Sqrt[3])*x^2]),x]

[Out]

-1/6*(Sqrt[3 + Sqrt[3]]*EllipticF[ArcCos[Sqrt[(3 - Sqrt[3])/3]*x], (1 + Sqrt[3])/2])

Rule 431

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(-(Sqrt[c]*Rt[-d/c, 2]*Sqrt[a -
 b*(c/d)])^(-1))*EllipticF[ArcCos[Rt[-d/c, 2]*x], b*(c/(b*c - a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c
] && GtQ[c, 0] && GtQ[a - b*(c/d), 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {1}{6} \sqrt {3+\sqrt {3}} F\left (\cos ^{-1}\left (\sqrt {\frac {1}{3} \left (3-\sqrt {3}\right )} x\right )|\frac {1}{2} \left (1+\sqrt {3}\right )\right ) \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 1.98 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.94 \[ \int \frac {1}{\sqrt {3-3 \sqrt {3}+2 \sqrt {3} x^2} \sqrt {3+\left (-3+\sqrt {3}\right ) x^2}} \, dx=\frac {\sqrt {3+\sqrt {3}-2 x^2} \sqrt {-3+3 \sqrt {3}-2 \sqrt {3} x^2} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {1-\frac {1}{\sqrt {3}}} x\right ),2+\sqrt {3}\right )}{6 \sqrt {\left (-2+\sqrt {3}\right ) \left (3-6 x^2+2 x^4\right )}} \]

[In]

Integrate[1/(Sqrt[3 - 3*Sqrt[3] + 2*Sqrt[3]*x^2]*Sqrt[3 + (-3 + Sqrt[3])*x^2]),x]

[Out]

(Sqrt[3 + Sqrt[3] - 2*x^2]*Sqrt[-3 + 3*Sqrt[3] - 2*Sqrt[3]*x^2]*EllipticF[ArcSin[Sqrt[1 - 1/Sqrt[3]]*x], 2 + S
qrt[3]])/(6*Sqrt[(-2 + Sqrt[3])*(3 - 6*x^2 + 2*x^4)])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(196\) vs. \(2(64)=128\).

Time = 2.61 (sec) , antiderivative size = 197, normalized size of antiderivative = 4.19

method result size
default \(\frac {\sqrt {x^{2} \sqrt {3}-3 x^{2}+3}\, \sqrt {3-3 \sqrt {3}+2 x^{2} \sqrt {3}}\, \sqrt {2}\, \sqrt {-12 x^{2} \sqrt {3}+18 x^{2}+9 \sqrt {3}-9}\, \sqrt {3}\, \sqrt {-\left (3-3 \sqrt {3}+2 x^{2} \sqrt {3}\right ) \left (\sqrt {3}-1\right )}\, F\left (\frac {x \sqrt {2}\, \sqrt {3}\, \sqrt {\left (2 \sqrt {3}-3\right ) \left (\sqrt {3}-1\right )}}{3 \sqrt {3}-3}, \frac {\sqrt {\left (\sqrt {3}-1\right ) \left (1+\sqrt {3}\right )}}{\sqrt {3}-1}\right ) \left (-3+\sqrt {3}\right )}{54 \left (\sqrt {3}-1\right )^{2} \sqrt {2 \sqrt {3}-3}\, \left (2 x^{4} \sqrt {3}-2 x^{4}-6 x^{2} \sqrt {3}+6 x^{2}+3 \sqrt {3}-3\right )}\) \(197\)
elliptic \(\frac {\sqrt {\left (x^{2} \sqrt {3}-3 x^{2}+3\right ) \left (3-3 \sqrt {3}+2 x^{2} \sqrt {3}\right )}\, \sqrt {6}\, \sqrt {9-\frac {6 \left (2 \sqrt {3}-3\right ) x^{2}}{\sqrt {3}-1}}\, \sqrt {9-\frac {6 \sqrt {3}\, x^{2}}{\sqrt {3}-1}}\, F\left (\frac {x \sqrt {6}\, \sqrt {\frac {2 \sqrt {3}-3}{\sqrt {3}-1}}}{3}, \frac {\sqrt {-9-\frac {6 \left (18 \sqrt {3}-18\right ) \sqrt {3}}{\left (\sqrt {3}-1\right ) \left (6-6 \sqrt {3}\right )}}}{3}\right )}{18 \sqrt {x^{2} \sqrt {3}-3 x^{2}+3}\, \sqrt {3-3 \sqrt {3}+2 x^{2} \sqrt {3}}\, \sqrt {\frac {2 \sqrt {3}-3}{\sqrt {3}-1}}\, \sqrt {18 x^{2} \sqrt {3}-18 x^{2}+6 x^{4}-6 x^{4} \sqrt {3}+9-9 \sqrt {3}}}\) \(223\)

[In]

int(1/(3+x^2*(-3+3^(1/2)))^(1/2)/(3-3*3^(1/2)+2*x^2*3^(1/2))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/54*(x^2*3^(1/2)-3*x^2+3)^(1/2)*(3-3*3^(1/2)+2*x^2*3^(1/2))^(1/2)*2^(1/2)*(-12*x^2*3^(1/2)+18*x^2+9*3^(1/2)-9
)^(1/2)/(3^(1/2)-1)^2*3^(1/2)*(-(3-3*3^(1/2)+2*x^2*3^(1/2))*(3^(1/2)-1))^(1/2)*EllipticF(1/3*x*2^(1/2)*3^(1/2)
/(3^(1/2)-1)*((2*3^(1/2)-3)*(3^(1/2)-1))^(1/2),1/(3^(1/2)-1)*((3^(1/2)-1)*(1+3^(1/2)))^(1/2))*(-3+3^(1/2))/(2*
3^(1/2)-3)^(1/2)/(2*x^4*3^(1/2)-2*x^4-6*x^2*3^(1/2)+6*x^2+3*3^(1/2)-3)

Fricas [A] (verification not implemented)

none

Time = 0.08 (sec) , antiderivative size = 40, normalized size of antiderivative = 0.85 \[ \int \frac {1}{\sqrt {3-3 \sqrt {3}+2 \sqrt {3} x^2} \sqrt {3+\left (-3+\sqrt {3}\right ) x^2}} \, dx=-\frac {1}{18} \, \sqrt {\sqrt {3} + 3} \sqrt {-9 \, \sqrt {3} + 9} F(\arcsin \left (\frac {1}{3} \, \sqrt {3} x \sqrt {\sqrt {3} + 3}\right )\,|\,-\sqrt {3} + 2) \]

[In]

integrate(1/(3+x^2*(-3+3^(1/2)))^(1/2)/(3-3*3^(1/2)+2*x^2*3^(1/2))^(1/2),x, algorithm="fricas")

[Out]

-1/18*sqrt(sqrt(3) + 3)*sqrt(-9*sqrt(3) + 9)*elliptic_f(arcsin(1/3*sqrt(3)*x*sqrt(sqrt(3) + 3)), -sqrt(3) + 2)

Sympy [F]

\[ \int \frac {1}{\sqrt {3-3 \sqrt {3}+2 \sqrt {3} x^2} \sqrt {3+\left (-3+\sqrt {3}\right ) x^2}} \, dx=\int \frac {1}{\sqrt {- 3 x^{2} + \sqrt {3} x^{2} + 3} \sqrt {2 \sqrt {3} x^{2} - 3 \sqrt {3} + 3}}\, dx \]

[In]

integrate(1/(3+x**2*(-3+3**(1/2)))**(1/2)/(3-3*3**(1/2)+2*x**2*3**(1/2))**(1/2),x)

[Out]

Integral(1/(sqrt(-3*x**2 + sqrt(3)*x**2 + 3)*sqrt(2*sqrt(3)*x**2 - 3*sqrt(3) + 3)), x)

Maxima [F]

\[ \int \frac {1}{\sqrt {3-3 \sqrt {3}+2 \sqrt {3} x^2} \sqrt {3+\left (-3+\sqrt {3}\right ) x^2}} \, dx=\int { \frac {1}{\sqrt {x^{2} {\left (\sqrt {3} - 3\right )} + 3} \sqrt {2 \, \sqrt {3} x^{2} - 3 \, \sqrt {3} + 3}} \,d x } \]

[In]

integrate(1/(3+x^2*(-3+3^(1/2)))^(1/2)/(3-3*3^(1/2)+2*x^2*3^(1/2))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(x^2*(sqrt(3) - 3) + 3)*sqrt(2*sqrt(3)*x^2 - 3*sqrt(3) + 3)), x)

Giac [F]

\[ \int \frac {1}{\sqrt {3-3 \sqrt {3}+2 \sqrt {3} x^2} \sqrt {3+\left (-3+\sqrt {3}\right ) x^2}} \, dx=\int { \frac {1}{\sqrt {x^{2} {\left (\sqrt {3} - 3\right )} + 3} \sqrt {2 \, \sqrt {3} x^{2} - 3 \, \sqrt {3} + 3}} \,d x } \]

[In]

integrate(1/(3+x^2*(-3+3^(1/2)))^(1/2)/(3-3*3^(1/2)+2*x^2*3^(1/2))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(x^2*(sqrt(3) - 3) + 3)*sqrt(2*sqrt(3)*x^2 - 3*sqrt(3) + 3)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {3-3 \sqrt {3}+2 \sqrt {3} x^2} \sqrt {3+\left (-3+\sqrt {3}\right ) x^2}} \, dx=\int \frac {1}{\sqrt {\left (\sqrt {3}-3\right )\,x^2+3}\,\sqrt {2\,\sqrt {3}\,x^2-3\,\sqrt {3}+3}} \,d x \]

[In]

int(1/((x^2*(3^(1/2) - 3) + 3)^(1/2)*(2*3^(1/2)*x^2 - 3*3^(1/2) + 3)^(1/2)),x)

[Out]

int(1/((x^2*(3^(1/2) - 3) + 3)^(1/2)*(2*3^(1/2)*x^2 - 3*3^(1/2) + 3)^(1/2)), x)